
Resolving XACML Rule Conflicts using Artificial
Intelligence

Bernard Stepien and Amy Felty
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Canada

{bstepien, afelty}@uottawa.ca

ABSTRACT
The XACML access control policy specification language
provides a simple rule/policy combining algorithm that is invoked
when a request is evaluated against a particular policy set, and the
results of the policy decision point (PDP) include solutions with

algorithm allows the policy writer to specify which effect should
prevail in case of such conflicts. This feature has long been
considered as misleading, and a wide variety of research has been
done in an attempt to extend it using supplementary language
features or algorithms based on priority definitions. We propose a
new algorithm that, instead of absolute priorities expressed as
numbers, is based on relative priorities that do not use numerical
scales. Two kinds of annotations need to be added to policies, one
that says if the value of an attribute is sensitive and another that
provides information that can be used to determine which attribute
is most important in the case when several sensitive values are
encountered during the processing of attribute values in a request.
This information serves as input to our decision making
mechanism, designed to respect the user-specified priorities as
best as possible.

CCS Concepts
General and reference General conference proceedings
Theory of computation

and privacy
methodologies Knowledge representation and reasoning

methodologies Policy iteration.

Keywords
XACML; access control; Prolog; artificial intelligence; logical
reasoning.

1. INTRODUCTION
XACML [1], [2] is an XML based language for specifying access
control policies. It is highly expressive and includes a rich set of

datatypes, complex logical expressions and an unlimited number
of user-selected attributes. However, it is very verbose and thus
large specifications become rapidly unreadable by human readers.
It also includes a conflict resolution algorithm which is used when
several policies match the values of an access control request and
yield conflicting effects (permit/deny) or conflicting obligations.
In this case, this algorithm provides the policy maker with a
choice of three strategies: first-applicable, permit prevails and
deny prevails. While these algorithms were thought to be
satisfactory in early implementations of XACML, the increasing
use of XACML in industry led to the awareness that these
algorithms were, in fact, not satisfactory and sometimes even led
to dangerous situations. Consequently, this resulted in extensive
research and eventually in new algorithm definitions in version
3.0 of XACML. Among the many proposals, we mention a few
that characterize specific approaches. One of the main issues with
XACML is to know whether the logic of a XACML policy set can
be considered as a pure Boolean expression. Some people
ascertain that theory while others deny it on the basis that a
XACML policy set has rule/policy combining algorithms that they
consider an integral part of the decision logic [3].

A large portion of literature on the subject of rule and policy
conflict resolution is based on the belief that a conflict is an error
[4] and thus must be eliminated. Thus, research on static and
dynamic conflict detection at compile time has prevailed.
However, when looking closely at the intention of XACML,
instead we discover that policies and rules define authorization
spaces for which they are specifically applicable. This is described
fully in [5]. However the problem of determining with accuracy
which rule prevails in case of an overlap of authorization spaces
remains. Also, since policies and rules are composed by various
actors who insert different rules at different times, it is difficult to
constantly clean the policy sets or policies of such conflicts as
discussed in [6]. Instead, it is more appropriate to define methods
to determine which policy and rule is applicable in a certain
context.

The following medical example is of particular interest because it
provides a good illustration of the weaknesses of the XACML rule
combining algorithm. Here we are trying to specify the conditions
under which a nurse can access electronic records (action read).
The first rule specifies that a nurse can read a surgery report
without further restrictions. The second rule prohibits nurses from
reading any document when the location is home care. And finally,
the third rule has no restriction on resources or location but
operates in the case of an emergency, i.e. a nurse can read
anything and anywhere in an emergency. The following policy set
can be viewed as a depiction of a horizontal tree. It illustrates the
hierarchy of XACML elements showing the name of the XACML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICISS 2020, March 19 22, 2020, Cambridge, United Kingdom
© 2020 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-7725-
https://doi.org/10.1145/3388176.3388188

element and its corresponding target logic. The corresponding full
XACML specification is left as an exercise to the reader.

01 policySet ConflictingPolicySet :=
02 subject-id matches nurse
04 policy NurseReadPolicy :=
05 action-id matches read
06
07 rule NurseResourceRule -> permit :=
08 resource-id matches surgery report
09
10 rule NurseHomeCareRestrictionRule -> Deny
11 := Location matches home care
12
13 rule NurseEmergencyRule -> Permit :=
14 Emergency matches true

In this example, it is clear that the home care rule conflicts with
the resource rule and with the emergency rule in the case of a
request of {subject-id = nurse, action-id = read, resource-id =
surgery report, Location = home care, Emergency = true . Here
the use of the XACML rule combining algorithm would produce
the following undesired effects:

Deny prevails would prevent a nurse from reading any
document during an emergency.
Permit prevails would allow a nurse to read documents
during home care.

Instead, these three rules provide a complex example of conflicts
depending on the situations encountered. Basically, we want the
NurseHomeCareRestrictionRule to prevail in order to deny access
in the case when the location is home care and there is no
emergency, but we would like to see the NurseEmergencyRule
prevail to allow access regardless of the location. This example is
a case of cascading conflicts that cannot be resolved by a simple
XACML rule or policy combining algorithm. This conflict cannot
be considered as an error and should not be corrected by removing
any of its logic. The traditional recommendation of cleaning the
policy of conflicts would also be undesirable because XACML
rules can specify only one type of effect, permit or deny. By
cleaning, we mean removing some of the rule logic that is posing
a problem.

Also, some may argue that the use of the first-applicable rule
combining algorithm and a proper ordering of the rules would
solve the problem. It is highly recommended to avoid this. Most
industry users that we have talked to have prohibited the use of
the first-applicable rule combining algorithm altogether, due to
bad experiences using it. In fact, while this algorithm is usable for
the above small example, larger policy sets with hundreds or even
thousands of rules would easily become unmanageable when
trying to determine the correct order. Thus, most authors have
decided to come up with new algorithms altogether.

We propose a new solution to deriving the final desirable effect.
Instead of any modification such as cleaning, our approach keeps
the logic of these three rules (and all rules) intact, and adds a new
priority mechanism, based on simple sensitivity assessments of
attributes. This mechanism is used in place of the traditional
XACML rule/policy combining algorithm. However, we do not
use a numerical method such as the one in[7], where priorities are
scaled during the evaluation of a request against a policy set, in
the process of determining the desired effect. Instead, we propose
to use artificial intelligence in the form of automated logical

reasoning, which relies on a two-step process of declaring relative
priorities: the first step consists of determining which values of an
attribute are sensitive, and the second consists of declaring which
attributes are more important than other attributes. This
information will be used when conflicting cases are encountered.
This approach handles the concept of defining authorization
spaces as in [5], however without the rule combining algorithm.

The specification of rules is based on the fact that in the absence
of an appropriate target logic (i.e., when no policy rule applies), a

implicit deny. Thus, an explicit deny is really meant to ensure that
a rule specifying a permit effect should exclude any cases covered
by rules with an explicit deny specification. The problem is that
the reverse may also be true.

Although it may appear that our approach supersedes the various
methods for conflict detection, we note that these methods can
still be very useful. Indeed, they provide material to a policy set
administrator that can help to define adequate priorities among
authorization spaces. This situation may arise often, mostly
because users wh
policies as indicated in[8]. Also, there are still cases that can be
considered as pure errors for which a priority algorithm proves
useless. This is the case, for example, when solutions contain
exactly the same attributes operating on the same values, such as
in the following simple example:

Rule 1: A1 matches V1 /\ A2 matches V2 => permit
Rule 2: A1 matches V1 /\ A2 matches V2 => deny

2. BACKGROUND
The list below contains a sample of approaches to conflict
detection resolution during the evaluation of requests against
access control policies.

[9] proposes an algorithm based on deterministic formal automata,
based on matrices representing the effect of a pairwise policy.

[10] proposes an ordered set of conflict resolution rules (CRR).
This is in the context of multiple PDPs in collaborative systems.

[11] proposes a system of prioritization of rules and policies using
numerical rankings and performing complex operations like
computing Eigen values to determine which rule prevails.

[12] proposes a variety of priority concepts as follows:

Absolute ordering where policies and rules are ordered and
the highest order has priority.
Deny by default where deny effects of rules have priority
over permit cases.
Obsolescence where more recent rules have priority over
older rules.
Specificity where a specific rule overrides a more general
rule.
Authority where a policy defined by a higher authority has
priority.
Privileges where the policy with the strongest rights has
priority over weaker rights

[5]proposes a conflict resolution mechanism based on effect
constraints of conflicting segments. First, conflicting segments are
defined and then a reordering of conflicting segments is
compulsory. Basically, no changes are made to the user specified
combining algorithms.

[13] proposes a method using the concept of various degrees of
majority for a given effect.

[14] proposes an ordering of attributes to determine which
attributes are more important in making decisions using weights.

Among the above approaches to resolve rule conflicts at runtime,
two stand out: one for the RBAC model in [5] and one for the
ABAC model in[11], with the latter one being derived from[14].

3. PRIORITY-BASED CONFLICT
RESOLUTION
3.1 Difficulty Determining Exceptions
One of the potential solutions we have explored involves no
changes to the policy specification language. In this approach, we
defined rules that express exceptions. In the presence of such rules,
there are several ways to try to resolve the conflicts:

Consider all rules as exceptions.
Consider the fact that some rules have broader coverage than
others.

In the above example, the first rule NurseResourceRule is
restricted only to the document surgery report, while the second
rule NurseHomeCareRestrictionRule has no restriction involving
surgery report, and actually applies to any value of attribute
resource-id. It is restricted only to location home care. But the
reverse is also true so that there is no way to determine which rule
has a broader coverage than the other. Indeed, both have broader
coverage, but not on the same attribute. Consequently, the only
way to determine which rule should win is to apply some priority
mechanism.

3.2 Description of the Algorithm
The algorithm has been implemented using the logic
programming language Prolog, used widely in artificial
intelligence applications due to its suitability for implementing
logical reasoning. In logic programming, there are two distinct
elements. The first is the knowledge base, which is a database of
facts and clauses (which express rules) about the system to be
reasoned about. The second element is the logic and reasoning
used to solve problems using the knowledge base as an input.

3.2.1 Structure of the Knowledge Base
In our case, the knowledge base is composed of three groups of
facts:

The description of priorities for each XACML attribute and
their corresponding values;
The description of relative priorities used to describe which
attributes are more important than others;
The actual logic of XACML rules in a given access control
application.

We note here that this relative priorities approach is closer to
human reasoning.

First, for the definition of priorities of attributes we consider
attribute/value pairs and specify if a value of an attribute is
sensitive or normal. A convincing example is the case of the
Emergency attribute. When its Boolean value is equal to true we
consider it as sensitive, while when it is false we consider it as
normal. The absence of such a definition can also be used to
express the fact that a given value is of no consequence in the
decision process.

The above example would require the following definition of
priorities to operate correctly. For the subject-id attribute, we
consider the nurse and psychiatrist values to be sensitive, in this
case, for two different reasons. The nurse is allowed to read
medical records of a patient only under certain conditions. Thus,
we consider his or her role as sensitive. On the other hand, the
psychiatrist deals with highly sensitive information that only s/he
can read. Also note that the sensitivity level normal for a surgeon
is the result of the fact that a surgeon performs his/her skills only
in an operating room, thus any other sensitive location is by
definition irrelevant, in sharp contrast with the nurses that perform
in various locations.

priority('subject-id', 'nurse', sensitive).
priority('subject-id', 'anesthesist', normal).
priority('subject-id', 'generalist', normal).
priority('subject-id', 'psychiatrist', sensitive).
priority('subject-id', 'surgeon', normal).

The action-id attribute has two sensitive values, read and email. It
is interesting to note that the print value is dependent on the read
value. You can print only if you can read.

priority('action-id', 'read', sensitive).
priority('action-id', 'write', normal).
priority('action-id', 'email', sensitive).
priority('action-id', 'print', normal).

The resource-id attribute has one particular sensitive value, the
psychiatric report.

priority('resource-id', 'general information', normal).
priority('resource-id', 'surgery report', normal).
priority('resource-id', 'assessment', normal).
priority('resource-id', 'psychiatric report', sensitive).

The Location attribute has sensitive values for any location
outside of a hospital, which here is ambulance and home care.

priority('Location', 'ambulance', sensitive).
priority('Location', 'operating room', normal).
priority('Location', 'home care', sensitive).
priority('Location', 'recovery room', normal).

Finally, the Emergency attribute has a sensitive value true.

priority('Emergency', 'true', sensitive).
priority('Emergency', 'false', normal).

Second, we define which attributes are more important than others
for the case when several sensitive values for different attributes
are present in a request. Here we consider that the Emergency
attribute prevails over any other attribute. In our case, this implies
that a nurse should be able to read any medical record in any
location. We specify this case using the special keyword $all.

is_more_important_than('Emergency', '$all').

Next, we consider the attribute Location as more important than
subject-id, action-id and resource-id. This is, of course, in order to
be able to handle appropriately the situation where the location is
home care.

is_more_important_than('Location', 'subject-id').
is_more_important_than('Location', 'action-id').
is_more_important_than('Location', 'resource-id').

In the above definition of facts, note that we have carefully
omitted a definition that would have said that Location is more
important than Emergency. The absence of a specification for this
case is naturally handled by Prolog since in Prolog, this would
generate a fail and force the system to look at the next available
solution.

Finally we consider the attribute resource-id more important than
subject-id in order to handle the psychiatric report case.

is_more_important_than('resource-id', 'subject-id').

It is important to note that the definitions for the
is_more_important_than fact is only partial. This is in sharp
contrast with the approach of defining complete matrices used
in[7]. This is inspired by the not-applicable effect of the XACML
PDP system, used when a request is not matched in the policy set.
However, in a Prolog implementation, if complete information
were required, the use of backtracking would have the effect of
forcing a search for another solution.

3.2.2 Reasoning Mechanism
When presenting a request to a policy decision point (PDP) using
the specified policy set, a number of solutions are returned,
possibly providing conflicting effects. A solution is defined as a
path through the policy set tree and is considered in its entirety
regardless of whether or not an element of logic belongs to a
particular XACML structuring entity (policy set, policy or rule).
Note that our reasoning mechanism is used only in case of
conflicts, not redundancies, mostly because our PDP is
implemented in Prolog where internal indexing is taking place,
reducing considerably the search time for solutions.

In general, we work on the tree representation of a policy set as
described in [5]. The tree is composed of sections of subtrees
expressing the anyOf and allOf constructs in a XACML 3.0 target
description, as was described in [12]. Here, the XACML anyOf

operator and the XACML allOf into Prolog conjunctions using the

described in [15] both for performance and also to enable easy
location of solution traces. However, there are some small but
important modifications to this early model that enable collecting
the names of attributes and the exact trace through the logic. Our
example is represented as follows in Prolog:

01 policy_set(PS, P, R, T, [
02 ['subject-id', A_subject_ID],
03 ['action-id', A_action_ID],
04 ['resource-id', A_resource_ID],
05
06 ['Location', A_Location],
07 ['Emergency', A_Emergency]],
08 EF):
09
10 PS = medex,
11 (A_subject_ID = ['subject-id', nurse],
12 TPS = tps1),
13 (
14 P = p1,
15 (A_action_ID = ['action-id', read],
16 TP= tp1),
17 (
18 (
19 R = r1,
20 (A_resource_ID = ['resource-id',

21 surgery_report],
22 T = [TPS, TP, tr1]),
23 EF = permit
24)
25 |
26 (
27 R = r2,
28 (A_Location = ['Location',
29 home_care],
30 T = [TPS, TP, tr2]),
31 EF = deny
32)
33 |
34 (
35 R = r3,
36 (A_Emergency = ['Emergency',
37 true],
38 T = [TPS, TP, tr3]),
39 EF = permit
40)
41)
42).

Solution paths are traces composed of tree traversals through
policy sets, policies and rules. They are obtained by posing a
query using the Prolog built-in findall predicate applied to the
entire tree:

:- findall(policy_set(PS, P, R, T, RQ,
EF), policy_set(PS, P, R, T, RQ, EF),

 LS).

where RQ represents a request, which is composed of values for
each attribute of the policy set, LS is a variable that will return a
list of solution paths, and EF is the effect of each solution path.
While the request contains values for all attributes used in the
entire policy set, the returned solutions contain only subsets of
attributes that are effectively used in the path. For example, the
request:

R1 :=
'subject-id' = 'nurse',
'action-id' = 'read',
'resource-id' = 'surgery_report',
'Location' = 'home_care',
'Emergency' = 'true'

will return three solution paths. The first one will traverse policy
set medex, policy p1 and rule r1 with an effect of permit. This is
achieved by the matching statements of lines 11, 12, 15, 16, 20,
21 of the Prolog representation of the XACML policy set above.
The subset of attributes for this solution path that contain sensitive
values is { subject-id, action-id }. Note that the attributes Location
and Emergency are absent from this list because there are no
corresponding matching expressions for them in this solution trace.
The surgery report value for resource-id has been declared as
non-sensitive in the priority facts above and thus does not appear
in the subset of attributes. The two other solution traces are left as
an exercise to the reader.

In this example, we have three results with two different effects
(both deny and permit). We have tried different mechanisms to
resolve such conflicts. First, we experimented with numerical
values to express priorities in two different ways.

The first approach consisted of calculating the sum of each
s that are

present in a solution trace through the policy set tree. This
solution was rapidly eliminated because it produces misleading
results when the solution traces do not contain exactly the same
number of attributes. In particular, this case arises when
expressions for a given attribute are not provided, which is the
way to express that any value of the attribute is applicable.

The second approach consisted of picking the solution trace for
which an attribute that is present in the policy logic showed the
highest priority value. This provided good results for our above
example but could not be generalized.

Consequently, we began exploring an algorithm that does not rely
on quantitative numerical values used to describe priorities, but
instead uses qualitative relative values as expressed by the Prolog
priority facts above.

The new algorithm has two steps:

The first step consists of collecting the attributes for which
there is a sensitive value in a particular solution path. Then,
the attribute that is the most important among all of those in
the subset of attributes in the solution path is chosen using
the is_more_important_than facts. The algorithm works
under the assumption that when using an attribute to specify
some exception, policy writers do use sensitive values in the
XACML target logic. It is clear that this approach would not
work in the case of non-sensitive values. However, access
control logic is mostly composed of cases where sensitive
values of attributes apply. After this step, we end up with a
single attribute that is the most important for a given solution
trace and serves as the representative of a solution trace.
In the second step, using the most important attributes for
each solution path determined in the first step, we apply the
is_more_important_than fact again, but this time to compare
the relative priority among solution paths, which determines
the most important solution path. The resulting solution path
then provides the final effect desired (permit or deny).

In our case, the request R1 produces three solutions against our
policy set.

The first solution consists of the path that traverses rule
NurseResourceRule, which is the first one returned when
evaluating the request against the policy set by the Prolog
inference engine:

Solution 1: policy_set(medex,p1,r1,[tps1,tp1,tr1],
 [[subject-id,[subject-id,nurse]],
[action-id,[action-id,read]],
[resource-id,[resource-id,

 surgery_report]],
[Location,_G1880],
[Emergency,_G1889]],
permit)

In the above first solution, we notice that Prolog open variable
values _G1880 and _G1889 are produced when the matching
logic does not contain attributes Location and Emergency. The
solution trace actually considers all the attributes in the attribute
list of the Prolog representation of the policy set. The solution
trace traverses policy set medex, policy p1 and rule r1.

A solution trace can be obtained using the following Prolog term
to be used in a query to the knowledge base:

go_pdp_med_1:-
nl, write('request 1'),
retractall(solution(_,_)),
assertz(solution(_,0)),
request(request_1, RQ),

findall(policy_set(medex, P, R, T, RQ,
 EF),

policy_set(medex, P, R, T, RQ, EF), LS),
extract_solution_traces(LS, [], LST),
nl, write('solution traces:'),
select_solution(LST, SSOL),
nl, write('overall effect: '),
write(SSOL).

The second solution trace returned by the above query is as
follows:

Solution 2: policy_set(medex,p1,r2,[tps1,tp1,tr2] ,
 [[subject-id,[subject-id,nurse]],
[action-id,[action-id,read]],
[resource-id,_G1961],
[Location,[Location,home_care]],
[Emergency,_G1979]],
deny)

In the above second solution, we notice that Prolog open variable
values _G1961 and _G1979 are produced when the matching
logic is absent for attributes resource-id and Emergency. The
solution trace traverses policy set medex, policy p1 and rule r2.

And finally the third solution trace is as follows:

Solution 3: policy_set(medex,p1,r3,[tps1,tp1,tr3],
[[subject-id,[subject-id,nurse]],
[action-id,[action-id,read]],
[resource-id,_G2051],
[Location,_G2060],
[Emergency,[Emergency,true]]],
permit)

In the above third solution, we notice that Prolog open variable
values _G2051 and _G2060 are produced when the matching
logic is absent for attributes resource-id and Location.

The solution trace traverses policy set medex, policy p1 and rule
r3.

For each of these solutions we collect the attributes for which
sensitive values are detected in the request and the corresponding
policy set targets. For example, in the case of the third solution
trace, we would have the following list.

[subject-id, action-id, Emergency]

Then we use the is_more_important_than fact to determine which
attribute is the most important for that solution, and it will be used
to represent this solution when comparing solutions to each other.
In this case, it is the attribute Emergency because of the
is_more_important_than fact for target attribute $all.

When comparing the Emergency attribute against other attributes
with matching expressions that operate on a sensitive value, we
can successfully derive that the Emergency attribute is the most
important of all. Thus the Emergency attribute will represent the
third solution when comparing the solutions among themselves.
This is summarized in Figure 1, where solid arrows show the path

of a given solution for request R1, grey boxes show the sensitive
values for attributes and dotted arrows show the
is_more_important_than relations.

By repeating this process for each solution, we determine that
Location is the most important attribute for the second solution
trace and the attribute action-id will represent the first solution,
mainly because there are no is_more_important_than definitions
for the attributes that are present in this solution path.

Figure 1. Visual representation of algorithm applied to
request 1.

Also, the results for the second request R2, where Emergency has
been set to false, will produce only two solutions, with the
attribute Location as the most important attribute. This attribute
value will be used to determine the final effect, which is deny.

R2 :=
'subject-id' = 'nurse',
'action-id' = 'read',
'resource-id' = 'surgery_report',
'Location' = 'home_care',
'Emergency' = 'false'

Finally, the same method applied to the request R3 will result in
only one solution produced, in which case,
determine priorities among attributes of this solution path. The
resulting effect of this solution is permit.

R3 :=
'subject-id' = 'nurse',
'action-id' = 'read',
'resource-id' = 'surgery_report',
'Location' = 'operating room',
'Emergency' = 'false'

Now, when handling request 1, the second step of our method can
be applied. We compare the attribute representatives for each

solution as given by the first step. Here the results of the first step
produced the following most important attribute representatives
for each solution path:

Solution 1: action-id => permit
Solution 2: Location => deny
Solution 3: Emergency => permit

Since Emergency has been defined as the most important attribute
of all, this will make solution 3 win and the final effect will be
permit. In other words, a nurse can read any document anywhere
during an emergency.

3.2.3 Handling Concurrent Priorities
If we add one more rule that deals with psychiatric reports this
system may no longer work.

rule NursePsychiatryRule -> Deny :=
 resource-

Effectively, since we have declared that the attribute Emergency is
more important than anything else, when attribute value
Emergency matches true and attribute resource-id matches value
psychiatric report in a request that is presented to the PDP, it will
allow a nurse to read a psychiatric report, which is what the above
additional rule wants to prevent. Thus, in this context we need to
improve our methodology. One easy way to handle this case is to
enhance the is_more_important_than facts by adding a field for
the highly critical value.

is_more_important_than('resource-id',
'$all').

Then, adding a clause to the Prolog logic to handle this case (lines
01 to 06 below) solves the problem. Here these cases would be
made available on the top of the list of alternative predicates and

considering the other cases as follows:

01 determine_most_important:-
02 is_more_important_than(A, V, '$all'),
03 significant(A),
04 request_value(A, V),
05 save_most_important(A),
06 !.
07
08 determine_most_important:-
09 is_more_important_than(A, '$all'),
10 significant(A),
11 request_value(A, V),
12 save_most_important(A),
13 !.
14
15 determine_most_important:-
16 significant(A),
17 (
18 most_important(nil)
19 |
20 most_important(MI),
21 is_more_important_than(A, MI)
22
23),
24 save_most_important(A),
25 fail.
26

27 determine_most_important.

The above code makes intensive use of the Prolog internal
database which in a way mimics the storage of information of
humans in their brains and reasoning as a retrieval of this
information.

3.3 Another Example in the Military Domain
The example provided in [12] can be enhanced to create the kind
of ambiguity found in the previous medical example, showing
again the benefit of priorities. Here we add a policy that considers
the unit being engaged.

policy agent_a policy :=
Agent matches a

rule No_fly_zone_rule > permit :=
Zone matches no_fly_zone.

rule HostilesPresenceRule -> deny

HostilesPresence matches true.

rule UnitRule -> permit:=
 Zone = no_fly_zone,
 Unit matches special forces.

In this case, special forces are allowed to enter the no fly zone
even when a hostile presence is detected. This is achieved using
the following facts:

is_more_important(HostilePresence, Zone).

4. CONCLUSION
In this paper we have shown how to resolve run-time conflicts
using artificial intelligence in the form of automated logical
reasoning, with an algorithm that uses priorities based on
sensitivity assessments defined for each policy/rule attribute and
its associated values. Our approach uses a relative relationship and
thus there is no need for numerical weights. This approach is
closer to human reasoning, which reacts to overall sensitivity
factors rather than scales of values. We also determined that
compile time conflict detection algorithms are very useful for
testing purposes. They can determine which requests to a PDP
produce these conflicts, and thus enable the policy administrator
to verify offline that the conflict resolution algorithms are
performing as expected.

5. ACKNOWLEDGMENTS
The authors acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada.

6. REFERENCES
[1] OASIS, XACML Version 2.0, 2004, docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-core-spec-
os.pdf.

[2] OASIS, XACML Version 3.0, 2013, http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[3] C.D.P.K. Ramli, H. R. Nielson, F. Nielson, The Logic of
XACML, in proceedings of FACS 2011 pp 205-222.

[4] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S.
-control

in 18th ACM Conference on Computer and Communications
Security, 2011, pp. 163 174.

[5] H. Hu, G.-J.Ahn and K. Kulkarni, Anomaly Discovery and

proceedings.
[6] B. Stepien

reducing
in 5th International Conference on Availability, Reliability,
and Security. IEEE Computer Society, 2010, pp. 140 147.

[7] I. Matteucci
execution International Workshop
on Data Privacy Management and Autonomous
Spontaneous Security, ser. Lecture Notes in Computer
Science, vol. 7731. Springer, 2013, pp. 133 145.

[8] M. Aqib and R. A. Shaikh, Analysis and comparison of
access control policies validation mechanisms, International
Journal of Computer Network and Information Security, vol.
7, no. 1, pp. 54 69, 2015.

[9] N. Li, Q. Wang, P. Rao, D. Lin, E. Bertino, and J. Lobo, A
formal language for specifying policy combining algorithms
in access control, CERIAS, Tech. Rep. 2008-9, 2008,
http://core.ac.uk/download/pdf/21173941.pdf.

[10] flicts
Advanced

Information Systems Engineering Workshops, ser. Lecture
Notes in Business Information Processing, vol. 178.
Springer, 2014, pp. 310 321.

[11] M. Hall- n
24th International

System Safety Conference, 2006.
[12] B.Stepien, A. Felty, S.Matwin, Challenges of Composing

XACML Policies in 2014 Ninth International Conference on
Availability, Reliability and Security.

[13] N. Li, Q. Wang, W.Qardaji, E.bertino, P. Rao, Access
Control Policy Compiling: Theory Meets Practice in
SACMAT 09 proceedings pages 135-144.

[14] A.J. Rashidi, A. Rezakhani, a new method to ranking
Attributes in Attribute Based Access Control using decision
fusion in Natural Computing Applications Forum 2016,
Springer Verlag.

[15] B. Stepien and A. Felty, Using Expert Systems to Statically

proceedings, pp 127-136.

